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Abstract-A heat transfer analysis of cooling panels is presented, based on one-dimensional analytical 
solutions in the directions normal and parallel to the tubes of the cooling panel. A two-dimensional finite- 
difference solution is also obtained, which is in very good agreement with the one-dimensional analytical 
solution, especially for thin panels. Therefore, the one-dimensional solution, which is very simple to apply, 

is recommended for calculations in practice. 

INTRODUCTION 

ACCORDING to the method of cooling buildings using 

cooling panels [l], the heat produced within or 
inserted into a room is absorbed by a cold fluid flowing 
through tubes imbedded in the ceiling of the room, 
as shown in Fig. 1. In new buildings, the ceiling is 
constructed to form the cooling panel, while in the 

case of old buildings a metal sheet incorporating 
cooling tubes is placed onto the lower surface of the 
ceiling. 

The objectives of the present study are : (a) to cal- 
culate the temperature field on the cooling panel ; (b) 

to calculate the heat absorbed per unit area of the 
panel ; and (c) to define quantities characterizing the 
panel efficiency. For this purpose, one-dimensional 
analytical solutions are obtained in the direction x, 
normal to the tubes, as well as in the direction z of 
the flow (Fig. 1). For the purpose of this analysis use 
is being made of the theory of flat plate solar collectors 
[2], which have some similarities to cooling panels. 

In order to evaluate the accuracy of the one-dimen- 
sional analytical solution, which is based on certain 

assumptions and approximations, the heat transfer 
problem is also solved as a two-dimensional one using 
the finite-difference method. The results of the two 
methods are in very good agreement, especially for 
thin panels, and therefore use of the analytical solu- 
tion for practical applications is recommended, as it 
is simpler. 

ANALYTICAL SOLUTION 

Temperature variation between tubes 
A Cartesian coordinate system x, y, z is considered, 

as shown in Fig. 1, i.e. coordinates x and y lie on the 
plane normal to the tubes, and z is the direction of 
the flow. It is assume&that the temperature variation 
along the thickness w of the panel (i.e. in the y direc- 
tion) is negligible. It is also assumed, temporarily, 

that the temperature variation in the flow direction is 
negligible. As illustrated in Fig. 2, an energy balance 
on an element of width Ax and unit length in the flow 

direction yields 

(1) 

where h is the heat transfer coefficient of the lower 
surface of the panel, T, the room temperature, T(x) 
the temperature of the pane1 and k its thermal con- 
ductivity. Considering that [dT/dx],+,, = [dT/dx],+ 
d(dT/dx), equation (1) gives after division by ku,Ax 

and replacement of Ax by dx : 

d*T 
dx2 = m’( T- Tr) 

where 

m2 = h/(kw). 

The boundary conditions for equation (2) are 

(3) 

0, [7lr+~,)/2 = T, (4) 

where T,, is the temperature of the panel at the location 
of the tube, i.e. from x = (S- 0,)/2 to x = (S+D,)/2. 
Integration of equation (2) with the above boundary 
conditions yields the temperature distribution 
between the tubes, i.e. 

T- T, cos h(mx) 

TO - T, cos h[m(S- DO)/21 ’ (5) 

Figure 3 shows the temperature variation between the 
tubes according to equation (5) for h = 10 W mm2 
“C~‘,T,=24”C,k=1.4Wm~‘“C-‘,~~=O.O4m, 
TO = 12”C, D, = 0.02 m and S = 0.3 m. 
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NOMENCLATURE 

A coefficient in finite-difference equation (34) S distance between the axes of two adjacent 

A, panel area [m*] tubes [m] 

(‘P specific heat [J kg ’ K ‘1 T local panel temperature [ C] 
D,,, D, outside and inside tube diameters. T,, panel temperature at the location of a tube 

respectively [m] [ Cl 
F factor given by equation (9) 7-r local fluid temperature [ C] 
F (dimensionless) r,:,, T,.,? Tr,, inlet, outlet and mean fluid 

, panel efficiency factor (dimensionless) temperatures [ C] 

F, panel flow factor (dimensionless) T p,m mean panel temperature [ C] 
F, panel cooling efficiency (dimensionless) T, room air temperature [ C] 
G dimensionless panel mass flow rate T” air temperature above the upper surface of 
h, h, /I, heat transfer coefficients of the panel a ceiling [ C] 

lower surface. of the inside tube surface 11’ panel thickness [m] 
and of the upper surface of the ceiling, b”O total thickness of a ceiling [m] 
respectively [W m ’ K ‘1 .\’ r - 1. l,- Cartesian coordinates 

k thermal conductivity [W m ’ K ‘1 A.Y. A: elements in the s and : directions, 
L panel length in flow direction [m] respectively [ml. 
nz quantity defined by equation (3) [mm ‘1 
l+l mass flow rate [kg s ‘1 
n number of tubes in the panel Subscripts 

Y* heat per unit length in flow direction P, E, W, N, S refer to the typical node and 
[W m ‘1 its four neighbours of the finite-difference 

q heat per unit area of the panel [W m ‘j grid. 

from room 

FIG I. Ceiling forming a cooling jxnel 

FIG. 2. Energy balance on an element Ax of the cooling panel 
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FIG. 3. One-dimensional analytical and two-dimensional numerical prediction of the temperature variation 
between the tubes of the panel, under the conditions mentioned in the text. 

Heat absorbed by the panel 
With reference to Fig. 2, the heat q* conducted to 

each tube per unit length in the flow direction is 

q* = q:+qr+q; (6) 

where qf is the heat inserted through the region of the 
panel just be!ow the tube, i.e. 

q: = D&V,- T,) (7) 

and q: is the heat flow in the x direction, calculated 
by differentiation of equation (5) i.e. 

q: = -kw> !!!r 
[ 1 dx r=,s -DC,)!2 

= 0.5h(T,-- T,) (S-DJF 

where 

(8) 

F = tan&W-RJPI 
m(S- Do)/2 (9) 

Substitution from equations (7) and (8) into equation 
(6) yields 

q* = h(T,-T,,) [Do+(S--D,)Fj. (10) 

Because the tube wall thickness is small and its 
thermal conductivity high, the thermal resistance of 
the tube may be neglected and the heat flow q* to the 
fluid may be expressed as 

q* = xDihXT,- TJ (11) 

where Tf is the local fluid temperature, D, the inside 
tube diameter and hf the heat transfer coefficient on 
the inside surface of the tube. Substitution of T, from 
equation (11) into equation (10) and solution for q* 

yields 

where 

q* = SF,h(T,- TJ (12) 

1 

h 
F, = 

1 1 (13) 

’ ND,, + (S- o,,fl + nD,h, 1 
F, can be considered as the ‘panel efficiency factor’. 

Equation (12) suggests that F, expresses the ratio of 
the actual cooling effect of the panel, to the cooling 
effect that would result if the panel surface were at the 
lOCd1 fluid temperature TV Equation (13) suggests that 
F, expresses the ratio of the heat transfer resistance 
from the panel surface to the room air, to the heat 
transfer resistance from the fluid to the room air. 

The heat q absorbed per unit area of the panel may 
be calculated from equation (12) i.e. 

q = q*/S = F,h(T,-- TJ. (14) 

Figure 4 shows q in terms of Tf with S as a parameter, 
calculated according to equation (14) for the fol- 
lowing values of the remaining parameters : h = 10 

W mm’ “C’, T, = 24°C D, = 0.020 m, Di = 0.018 
m,h,=3000Wm~* Cm’,k= 1.4Wm-’ ‘C’and 
M’ = 0.04 m. 

Temperature distribution inflow direction 
The cooling fluid enters the panel at temperature 

Tf.i and leaves it at T,, > Tf~i. With reference to Fig. 
5, which shows a single tube of the panel. an energy 
balance on an element AZ of the fluid yields 

[$,T~]~-[$,T~]I-bl+q*Az = 0. (15) 

By considering that [Tf]z+al = [T,l,+dT, sub- 
stituting q* from equation (12) and replacing AZ by 
dz, equation (15) becomes 

tr$,z -nSF,h(T,- Tf) = 0. (16) 

Integration of the above equation with boundary con- 
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FIG. 4. Analytica! and numerical prediction of the heat. y, 
absorbed per unit area of the panel in terms of the fluid 
temperature, Tr, with tube spacing. S. as a parameter, under 

the conditions mentioned in the text. 

dition T, = Tf,, at 3 = 0, yields the temperature dis- 
tribution in the flow direction, i.e. 

T - T 
Tr., - Tr 

- exp (- hnSF,z/ljlcJ. (17) 

If the panel length in the Aow direction is L. then 
the outlet fluid temperature, Tr__ may be calculated 
from equation (17) for z = L, i.e. 

7’f.o - Tr 
-Tr., -- T 

= exp (- A,hF,/t$,) (18) 

where 

is the panel area. 

A, = FlSL (19) 

The ‘panel cooling efficiency’ F, can be defined as 

the ratio of the actual cooling effect of the panel to 
the cooling effect that would result if the panel surface 
were at the inlet fluid temperature, i.e. 

kc,(T,:, - T,,) 
Fc = A,h(T,-TT,:,) ’ (20) 

By using equation (IX), the above equation becomes 

where 

Fz = 

= Gfl -exp(- l/G)]. (22) 

Quantity F? is a function of a single variable, i.e. the 
dimensionless panel mass flow rate 

G = tic,/A,hF, (23) 

and may be named ‘pane1 flow factor’. 
By using equation (JO), the heat y absorber per unit 

area of the panel may be expressed as 

q = F,h(T,- T,.,). (24) 

The above equation is more useful than equation (14) 
because it allows calculation of the heat q in terms of 
the known fluid inlet temperature r,,. 

MeanJuid undpanrl temperatures 

‘The mean fluid temperature 

T,“, = ; s I 

T, dJ (25) 
0 

can be calculated by substituting 7’r from equation 

(17) into the above equation and then integrating. 
Using also equations (21) and (24) the following 
expression is found for the mean fluid temperature : 

The heat y absorbed per unit area of the panel. 
which is given by equations (14) or (24). may also be 

expressed in terms of the mean panel surface tem- 
perature T,,_, as : 

Y = NT,- Tp,,). (27) 

By combining the above equation with equation (24), 
the following expression is derived for the mean panel 
temperature 

TWO-DIMENSIONAL NUMERICAL SOLUTION 

With reference to Fig. 1, assuming negligible vari- 
ation of temperature in the flow direction z, the 
steady-state two-dimensional heat conduction equa- 

FIG. 5. Energy balance on an element AZ of the cooling Ruid. 
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tion on the plane x-y normal to the tubes may be 
written as 

;(kg)+;(k$)=O (29) 

where the thermal conductivity k takes a different 
value in each of the various layers of the ceiling. 
Differential equation (29) may be solved by the finite- 
difference method within the unit of symmetry OABC 
(i.e. for 0 < x d S, 0 < y < wu) or ODEC (i.e. for 

0 < x < S/2, 0 < y < MJ,J, with the following bound- 
ary conditions. 

On the lower surface OA, the heat flow q(x,O) is 
prescribed, i.e. 

q(x, 0) = h[T, - T(x, WI (30) 

where h is the heat transfer coefficient of the lower 
surface of the panel and T, is the room air tem- 
perature. 

On the upper surface CB, the heat flow q(x, wo) is 
prescribed as 

q(x, w0) = M~“--T(& wdl (31) 

where h, is the heat transfer coefficient of the upper 
surface of the ceiling and T, is the air temperature 
above the ceiling, which is considered internal, i.e. it 

separates two storeys. The problem of external 
ceilings, which is transient owing to the time-depen- 
dent T, and the time-dependent incident solar radi- 

ation, is examined elsewhere [3]. 
On the inside surface of the tube, the heat flow 

q(x,y) is prescribed as 

q(x, Y) = MT(x> Y) - &I (32) 

where T(x, y) and hr are the temperature and the heat 
transfer coefficient of the inside surface of the tube, 
respectively, and Tf is the fluid temperature. 

On boundaries OC and AB, which are planes of 
symmetry, the following boundary conditions are 
imposed : 

;g(o,Y) = 0, g(Q) = 0. (33) 

Solution of differential equation (29) is obtained 
within the domain OABC of Fig. 1 by employing a 

usual finite-difference procedure (see, for example [4]) 
suitably modified so as to incorporate boundary con- 
ditions (30)-(33). Briefly, a Cartesian grid composed 
of coordinate lines x and y is imposed on the solution 
domain, with the tube periphery approximated by 
straight lines. Integration of differential equation (29) 
over each control-volume of the grid, yields finite- 
difference equations of the general form 

ApTp = A,T,+A,T,+A,T,+A,T, (34) 

where As are known coefficients and the subscripts 
refer to the typical node P and its four neighbours, E, 
W, N, S. The set of finite-difference equations (34) for 
all nodes P, combined with similar finite-difference 

FIG. 6. Predicted temperature contours on the cross-section 
of a cooling panel, under the conditions mentioned in the 

text. 

equations for the boundary control-volumes, is solved 
by employing usual techniques to give the temperature 
field. An example of the results is given in Fig. 6, 
which shows the predicted temperature contours for 
a ceiling composed of three layers of thicknesses (from 
the lower to the upper) w = 0.04 m, 0.04 m and 0.10 
m with corresponding thermal conductivities k = 1.4 

Wm-‘“C-‘,0.036Wm~‘“C-‘and2.03Wm~’ 

“C ‘. The remaining parameters are fixed to the 
values h = h, = 10 W mm’ “C’, T,= 24.C 
hr= 3000 W mm2 “C-‘, Tf= 12’C, D,=O.O20 m, 
D, = 0.018 m and S = 0.3 m. 

The predicted temperature variation along the x- 

direction line passing through the centers of the tubes 
for the same case as above, is shown in Fig. 3, together 
with the one-dimensional analytical solution (i.e. 
equation (5)). The agreement is very good. 

Under the same conditions, Fig. 4 shows the pre- 

dicted heat q absorbed per unit area of the panel, in 
terms of Tf with S as a parameter, together with the 
analytical solution (i.e. equation (14)). The agreement 
of the two solutions is very good. 

CONCLUSION 

Analytical solutions, expressed by equations (5) 

and (17), have been obtained for the temperature 
distributions between and along the tubes of a cooling 
panel, respectively. 

Based on the above solutions, equations (14) and 

(24) have been derived, which express the heat 
absorbed per unit area of the cooling panel. 

Quantities expressing the performance of a cooling 

panel have been introduced, i.e. the panel efficiency 
factor, F,, the panel flow factor, F,, and the panel 
cooling efficiency, F,. 

A two-dimensional finite-difference solution of the 
problem has also been obtained. Comparisons with 
the one-dimensional analytical solution showed very 
good agreement, especially for thin panels, as illus- 
trated in the examples of Figs. 3 and 4. Therefore, 
the one-dimensional analytical solution, which is very 
simple to apply, is recommended for calculations in 
practice. 
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TRANSFERT THERMIQUE ANALYTIQUE ET NUMERIQUE DANS LES PANNEAIJX 
REFRIGERANTS 

Resume-Une analyse du transfert thermique des panneaux refrigerants est present& a partir dcs solutions 
analytiques unidirectionnelles dans les directions normale et parallele aux tubes du panneau. On obtient 
aussi unc solution bidimensionnelle aux differences iinies qui est en bon accord avec la solution analytique 
unidirectionnelle, specialement pour les panneaux minces. La solution unidircctionnclle qui es1 d’ap- 

plication tres simple est rccommandee par des calculs pratiques. 

ANALYTISCHE UND NUMERISCHE BESTIMMUNG DES WARMETRANSPORTS IN 
KUHLREGISTERN 

Zusammenfassung-Dcr Warmetransport in Kiihlrcgistern wird untersucht. Dies geschieht aufder Grund- 
lage eindimensionaler analytischer L.iisungen senkrecht und parallel zu den Rohren des Kiihlregisters. 
Zusatzlich wird die zweidimensionale Liisung einer Finite-Differenzen-Methode vorgestcllt, die besonders 
fur diinne Register sehr gut mit der eindimensionalen analytischcn Liisung iibereinstimmt. Deshalb wird 
die in ihrer Anwendung sehr einfdchc eindimensionale analytische Ldsung zur praktischen Anwendung 

vorgeschlagen. 

AHAnIlTkIgECKOE~ZIMCnEHHOEWCCnEAOBAHMETEnnOnEPEHOCAB 
OXJIAEAAEMbIX IIAHEJIRX 

boTaqllP)Jati awmi3 ~rennonepeaoca B oxnaxccnaebndx nattenxx Ha ocmxe onHoMepm,Ix aHanbi=w 
‘lec~tix pemeusii B Hanpasnemilx, nepneHAeKynrpHoh4 A napannenbtioM rpy6abt naliena. KOHeYHO- 
pa3HoCTHblM M~TOLIOM nony=teHo neykfepfioe pemeaue, pe3ynbraTbt KOTOpOrO OgeHb XOpOI"0 

CornacyEoTcn c pe3ynbTaTaMw oAHoMepaoro aHanHTkiwCKOrO pe111eeli51, oco6eHHo B cnyvae TOHKHX 

IIaHeJIefi. nO3TOMy LUIS npaKTH%%KuX paC'IeTOB peKOMeHnyeTCK IIpOCTOe B UCIIOJIb30BaHAB OAHOMep- 
Hoe pememie. 


