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Abstract—A heat transfer analysis of cooling panels is presented, based on one-dimensional analytical

solutions in the directions normal and paraliel to the tubes of the cooling panel. A two-dimensional finite-

difference solution is also obtained, which is in very good agreement with the one-dimensional analytical

solution, especially for thin panels. Therefore, the one-dimensional solution, which is very simple to apply,
is recommended for calculations in practice.

INTRODUCTION

ACCORDING to the method of cooling buildings using
cooling panels [1], the heat produced within or
inserted into a room is absorbed by a cold fluid flowing
through tubes imbedded in the ceiling of the room,
as shown in Fig. 1. In new buildings, the ceiling is
counstructed to form the cooling panel, while in the
case of old buildings a metal sheet incorporating
cooling tubes is placed onto the lower surface of the
ceiling.

The objectives of the present study are: (a) to cal-
culate the temperature field on the cooling panel; (b)
to calculate the heat absorbed per unit area of the
panel; and (c) to define quantities characterizing the
panel efficiency. For this purpose, one-dimensional
analytical solutions are obtained in the direction x,
normal to the tubes, as well as in the direction z of
the flow (Fig. 1). For the purpose of this analysis use
is being made of the theory of flat plate solar collectors
[2], which have some similarities to cooling panels.

In order to evaluate the accuracy of the one-dimen-
sional analytical solution, which is based on certain
assumptions and approximations, the heat transfer
problem is also solved as a two-dimensional one using
the finite-difference method. The results of the two
methods are in very good agreement, especially for
thin panels, and therefore use of the analytical solu-
tion for practical applications is recommended, as it
is simpler.

ANALYTICAL SOLUTION

Temperature variation between tubes

A Cartesian coordinate system x, y, z is considered,
as shown in Fig. 1, i.e. coordinates x and y lie on the
plane normal to the tubes, and z is the direction of
the flow. It is assumed that the temperature variation
along the thickness w of the panel (i.e. in the y direc-
tion) is negligible. It is also assumed, temporarily,

that the temperature variation in the flow direction is
negligible. As illustrated in Fig. 2, an energy balance
on an element of width Ax and unit length in the flow
direction yields

hAX(T,— T w7 PR I
x( o )+ B dx x_ Y dx x+Ax—

M

where £ is the heat transfer coefficient of the lower
surface of the panel, 7, the room temperature, 7(x)
the temperature of the panel and k its thermal con-
ductivity. Considering that [d7/dx],, 4. = [dT/dx] .+
d(dT/dx), equation (1) gives after division by kwAx
and replacement of Ax by dx:

d:r
S m*(T—T,) (2)
where
m? = hf(kw). (3)

The boundary conditions for equation (2) are

[iz]r-o =0, [Tv]x:(S—Do)/?. = To (4)
where T is the temperature of the panel at the location
of the tube, i.e. from x = (S—D,)/2to x = (S+D,)/2.
Integration of equation (2) with the above boundary
conditions yields the temperature distribution
between the tubes, i.e.

T-T, cos h(mx)
T,—T, coshim(S—D,)/2]

&)

Figure 3 shows the temperature variation between the
tubes according to equation (5) for A= 10 W m~?
C L, T,=24°C,k=14Wm™'°C"', w=10.04 m,
T,=12°C, D,=0.02mand § = 0.3 m.
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NOMENCLATURE

A cocfficient in finite-difference equation (34) S distance between the axes of two adjacent

A, panel area [m?] tubes [m)]

¢, specific heat [J kg ' K '] T local panel temperature | C]

D,, D; outside and inside tube diameters, T, panel temperaturc at the location of a tube
respectively [m] [C]

F  factor given by equation (9) T local fluid temperature [ C]
(dimensionless) T, Tyoo Ty inlet, outlet and mean fluid

F,  panel efficiency factor (dimensionless) temperatures [ C]

F, panel flow factor (dimensionless) T, mean panel temperature ['C]

F. panel cooling efficiency (dimensionless) T. room air temperature ['C]

G dimensionless panel mass flow rate T, air temperature above the upper surface of

h, hy, h, Theat transfer coefficients of the panel a ceiling [*C]
lower surface, of the inside tube surface w  panel thickness [m]
and of the upper surface of the ceiling, w, total thickness of a cciling [m]
respectively [Wm 2K '] x,y,z  Cartesian coordinates

k thermal conductivity [Wm™ 'K '] Ax,Az  elements in the x and = directions,

L panel length in flow direction [m] respectively [m].

m  quantity defined by equation (3) [m~']

1 mass flow rate [kgs ']

n number of tubes in the panel Subscripts

¢* heat per unit length in flow direction P,E,W,N,S refer to the typical node and
[Wm'] its four neighbours of the finite-difference

q heat per unit area of the panel [W m 7] grid.
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FiG. 2. Energy balance on an element Ax of the cooling panel.
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FiG. 3. One-dimensional analytical and two-dimensional numerical prediction of the temperature variation
between the tubes of the panel, under the conditions mentioned in the text.

Heat absorbed by the panel
With reference to Fig. 2, the heat ¢* conducted to
each tube per unit length in the flow direction is

q* =gt +q¥ +q% (6)

where g7 is the heat inserted through the region of the
panel just below the tube, i.e.

g¥ = D (T, —Ty) @)
and ¢F is the heat flow in the x direction, calculated
by differentiation of equation (5), i.e.
dT
qf = —kw| — =0.5(T,—Ty) (S—D,)F
dx x=(S-D,)/2
(3)
where

tan A[m(S—D,)/2]
T T m(S—Dy2 ©)

Substitution from equations (7) and (8) into equation
(6) yields

q* = W(T,=To) [D,+(S—D,)F]. (10)

Because the tube wall thickness is small and its
thermal conductivity high, the thermal resistance of
the tube may be neglected and the heat flow g* to the
fluid may be expressed as

q* = nDh{To—T)) 1y

where T is the local fluid temperature, D, the inside
tube diameter and A, the heat transfer coefficient on
the inside surface of the tube. Substitution of T, from
equation (11) into equation (10) and solution for ¢*
yields

q* = SFW(T,—T) (12)

where

1

h

F= (13)

1 ]
S[h[D(,—i—(S—DO‘)F] + nDth

F, can be considered as the ‘panel efficiency factor’.
Equation (12) suggests that F, expresses the ratio of
the actual cooling effect of the panel, to the cooling
effect that would result if the panel surface were at the
local fluid temperature T;. Equation (13) suggests that
F| expresses the ratio of the heat transfer resistance
from the panel surface to the room air, to the heat
transfer resistance from the fluid to the room air.

The heat ¢ absorbed per unit area of the panel may
be calculated from equation (12), i.e.

q=q*/S=FMT.—-T). (14)

Figure 4 shows ¢ in terms of T; with S as a parameter,
calculated according to equation (14) for the fol-
lowing values of the remaining parameters: # = 10
Wm™?°C™!, T,=24°C, D, = 0.020 m, D, = 0.018
m,h=3000Wm *°C ' k=14Wm '°C 'and
w = 0.04 m.

Temperature distribution in flow direction

The cooling fluid enters the panel at temperature
T;; and leaves it at Ty, > T;. With reference to Fig.
5, which shows a single tube of the panel, an energy
balance on an element Az of the fluid yields

[Tcpn] —[’fc,,T,] Az =0. (15)
n k4 n -+ Az

By considering that [T, . =[T{.+dT;, sub-
stituting ¢* from equation (12) and replacing Az by
dz, equation (15) becomes

. dT;
My —nSF T, —T) =0. (16)

Integration of the above equation with boundary con-
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F1G. 4. Analytical and numerical prediction of the heat, ¢,

absorbed per unit area of the panel in terms of the fluid

temperature, 7y, with tube spacing, S, as a parameter, under
the conditions mentioned in the text.

dition T;= T;; at z = 0, yields the temperature dis-
tribution in the flow direction, i.c.

T,—T,
L = exp (—hnSFz/mc,).

(17

If the panel length in the flow direction is L, then
the outlet fluid temperature, 7, may be calculated
from equation (17) forz = L, i.e.

Tt'. o Tr

T 7 = eXp (— A F/micy)

(18)

where

A, =nSL (19)

is the panel area.

Panel cooling efficiency

The ‘panel cooling efficiency’ F, can be defined as
the ratio of the actual cooling effect of the panel to
the cooling effect that would result if the panel surface
were at the inlet fluid temperature, i.e.

_ {i}f‘p(TlZo T

FC B Aph(Tr_TfJ) '

(20)

By using equation (18), the above equation becomes
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e

Fo= "[l—exp(—AAF el = FIF. (21
Ah
where
Fr= "0 [l —exp (= A jiF jrie,)]
> T ANF, P A Gy

= G[l—exp(—1/G)]. 22)

Quantity F, is a function of a single variable, i.e. the
dimensionless panel mass flow rate

G = ric,| AhF, (23)

and may be named ‘panel flow factor’.
By using equation (20), the heat ¢ absorber per unit
area of the panel may be cxpressed as

g =FnT —T,). (24)

The above equation is more useful than equation (14)
because it allows calculation of the heat ¢ in terms of
the known fluid inlet temperature T,

Mean fluid and panel temperatures
The mean fluid temperature

1 [
| T.dv
I ‘£ vdy

can be calculated by substituting 7 from equation
(17) into the above equation and then integrating.
Using also equations (21) and (24) the following
expression is found for the mean fluid temperature :

Tt)m = (25)

4
v = T+ o (1= Fa). 2
T T’“+}zFC“ Fy) (26)
The heat ¢ absorbed per unit area of the panel.
which is given by equations (14) or (24), may also be
expressed in terms of the mean panel surface tem-

perature T, as:
q= h(Tr_ Tpﬂm)' (27)

By combining the above equation with equation (24),
the following expression is derived for the mean panel
temperature

(28)

Tp.m = Tﬁi {l ”FL)

]
tE

TWO-DIMENSIONAL NUMERICAL SOLUTION

With reference to Fig. 1, assuming negligible vari-
ation of temperature in the flow direction z, the
steady-state two-dimensional heat conduction equa-

F1G. 5. Energy balance on an element Az of the cooling fluid.
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tion on the plane x—y normal to the tubes may be

written as
0 oT 0 oT
a("a)*a("a) =0

where the thermal conductivity & takes a different
value in each of the various layers of the ceiling.
Differential equation (29) may be solved by the finite-
difference method within the unit of symmetry OABC
(ie. for 0<x< S, 0<y < wy) or ODEC (ie. for
0 < x <872, 0 <y < wy), with the following bound-
ary conditions.

On the lower surface OA, the heat flow g(x,0) is
prescribed, i.e.

(29)

q(x,0) = h[T.—T(x,0)] (30)

where 4 is the heat transfer coefficient of the lower
surface of the panel and T, is the room air tem-
perature.

On the upper surface CB, the heat flow g(x, w,) is
prescribed as

q(x, wo) = h[T,~T(x, wy)] 3D

where £, is the heat transfer coefficient of the upper
surface of the ceiling and 7, is the air temperature
above the ceiling, which is considered internal, i.e. it
separates two storeys. The problem of external
ceilings, which is transient owing to the time-depen-
dent T, and the time-dependent incident solar radi-
ation, is examined elsewhere [3].

On the inside surface of the tube, the heat flow
q(x,y) is prescribed as

q(x,y) = hT(x,y)—T{ (32)

where T(x, y) and A; are the temperature and the heat
transfer coefficient of the inside surface of the tube,
respectively, and T is the fluid temperature.

On boundaries OC and AB, which are planes of
symmetry, the following boundary conditions are
imposed :

oT T
Ton=0. Tep=0 @

Solution of differential equation (29) is obtained
within the domain OABC of Fig. 1 by employing a
usual finite-difference procedure (see, for example [4])
suitably modified so as to incorporate boundary con-
ditions (30)—(33). Briefly, a Cartesian grid composed
of coordinate lines x and y is imposed on the solution
domain, with the tube periphery approximated by
straight lines. Integration of differential equation (29)
over each control-volume of the grid, yields finite-
difference equations of the general form

APTP = AETE+AWTW+ANTN+ASTS (34)

where As are known coeflicients and the subscripts
refer to the typical node P and its four neighbours, E,
W, N, S. The set of finite-difference equations (34) for
all nodes P, combined with similar finite-difference
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FiG. 6. Predicted temperature contours on the cross-section
of a cooling panel, under the conditions mentioned in the
text.

equations for the boundary control-volumes, is solved
by employing usual techniques to give the temperature
field. An example of the results is given in Fig. 6,
which shows the predicted temperature contours for
a ceiling composed of three layers of thicknesses (from
the lower to the upper) w = 0.04 m, 0.04 m and 0.10
m with corresponding thermal conductivities & = 1.4
Wm='°C ', 0.036 Wm~' °C~' and 2.03 Wm"'
°C~'. The remaining parameters are fixed to the
values A=h,=10 W m~? °C™', T =24°C,
he=3000 W m~? °C~!, T, =12°C, D, = 0.020 m,
D;=0.018mand S=03m.

The predicted temperature variation along the x-
direction line passing through the centers of the tubes
for the same case as above, is shown in Fig. 3, together
with the one-dimensional analytical solution (i.e.
equation (5)). The agreement is very good.

Under the same conditions, Fig. 4 shows the pre-
dicted heat g absorbed per unit area of the panel, in
terms of 7; with S as a parameier, together with the
analytical solution (i.e. equation (14)). The agreement
of the two solutions is very good.

CONCLUSION

Analytical solutions, expressed by equations (5)
and (17), have been obtained for the temperature
distributions between and along the tubes of a cooling
panel, respectively.

Based on the above solutions, equations (14) and
(24) have been derived, which express the heat
absorbed per unit area of the cooling panel.

Quantities expressing the performance of a cooling
panel have been introduced, i.e. the panel efficiency
factor, F,, the panel flow factor, F,, and the panel
cooling efficiency, F..

A two-dimensional finite-difference solution of the
problem has also been obtained. Comparisons with
the one-dimensional analytical solution showed very
good agreement, especially for thin panels, as illus-
trated in the examples of Figs. 3 and 4. Therefore,
the one-dimensional analytical solution, which is very
simple to apply, is recommended for calculations in
practice.
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TRANSFERT THERMIQUE ANALYTIQUE ET NUMERIQUE DANS LES PANNEAUX
REFRIGERANTS

Résumé—Une analyse du transfert thermique des panneaux réfrigérants est présentée a partir des solutions

analytiques unidirectionnelles dans les directions normale et paralléle aux tubes du panneau. On obtient

aussi une solution bidimensionnelle aux différences finies qui est en bon accord avec la solution analytique

unidirectionnelle, spécialement pour les panneaux minces. La solution unidirectionnelle qui est d’ap-
plication trés simple est reccommandée par des calculs pratiques.

ANALYTISCHE UND NUMERISCHE BESTIMMUNG DES WARMETRANSPORTS IN
KUHLREGISTERN

Zusammenfassung—Der Wirmetransport in Kihlregistern wird untersucht. Dies geschieht auf der Grund-

lage eindimensionaler analytischer Losungen senkrecht und parallel zu den Rohren des Kiihlregisters.

Zusitzlich wird die zweidimensionale Losung einer Finite-Differenzen-Methode vorgestellt, die besonders

fiir dinne Register sehr gut mit der eindimensionalen analytischen Losung Gbereinstimmt. Deshalb wird

die in ihrer Anwendung sehr einfache eindimensionale analytische Losung zur praktischen Anwendung
vorgeschlagen.

AHAJIUTUYECKOE U YUCINEHHOE UCCJIEJOBAHHWE TEITJIOITEPEHOCA B
OXJTAXKIAEMBIX MMAHEJISIX

Almoralnm—llan AHAJIMN3 TEIUJIOMEPEHOCA B OXJIAXIAACMBIX MNAHCJIAX HA OCHOBE OHHOMEPHBIX aHAJIMTH-

YECKHX pClHCHHﬁ B HAmpaBJICHHUAX, NCPHCHARKYJIIPHOM H MapaulcJibHOM prﬁaM nauesd. Koneuno-

PA3HOCTHBIM METOAOM TIIONYYEHO JABYMEPHOE PCIUCHHE, pPE3YJbTaThl KOTOPOro O4YEHb XOpOLIOo

COrjacyroTcsi C pesyiabTaraMH OJHOMEPDHOIO aHAJIHTHYCCKOro DEHICHHA, ocobeHHO B CJIy4yae TOHKHX

faHeNeH. nOSTOMy IS MPAKTHYCCKUX PACYETOB PEKOMEHAYETCH MPOCTOC B HMCIOJIB30BAHHH OAHOMED-
HOE€ pEIlECHHE.



